

Abstandsgesetz - Licht

Bildquelle: https://www.pexels.com/de-de/foto/vintage-lampe-klassisch-laterne-11662100/

Klassenstufe	Oberthemen	Unterthemen	Anforderungsniveau	Durchführungsniveau	Vorbereitung
Sek. 1	Intensität	Abstandsgesetze	•	•	2 Min.

Aufgabenstellung

Wie verändert sich die Intensität des Lichts mit der Entfernung? Oder warum ist ein Scheinwerfer heller als ein Stern im Nachthimmel?

VAD_Physik_Abstandsgesetz

1. Materialien und Ausrüstung

- Lichtquelle
- SPARKvue App
- Smart Lichtsensor
- Metermaß
- Smart Cart und Stativadapter (optional)

2. Versuchsablauf

- 1. Verbinde den Smart Lichtsensor mit SPARKvue. Erstelle eine Ziffernanzeige für die Weißlichtmessung.
- 2. Lege den Sensor mit der schmalen Seite auf den Tisch. Dadurch verringert sich das Streulicht, das der Tisch reflektiert.
- 3. Lege die Lichtquelle so auf den Tisch, dass sie auf der gleichen Höhe wie das kleine schwarze Röhrchen des Smart Lichtsensors ist.
- 4. Lege das Maßband auf den Tisch. Die Lichtquelle steht an der 0 cm Markierung. Der Lichtsensor wird mit dem schwarzen Röhrchen zur Lichtquelle ausgerichtet. Der Übergang zwischen schwarzen Röhrchen und weißem Gehäuse liegt auf der 30 cm Marke.

3. Daten sammeln

- 5. Beginne mit der Datenerfassung. Trage den Abstand des Lichtsensor zur Lichtquelle und den Messwert der Weißintensität in die Tabelle ein.
- 6. Verschiebe den Sensor 10 cm weiter weg von der Lichtquelle und notiere wieder Abstand und Intensität.
- 7. Wiederhole Schritt 6 weitere vier Mal.

Abstand [m]	Intensität [a.u.]	Inverse Abstand zum Quadrat [1/m ²]

4. Datenanalyse

8. Trage den Abstand auf der x-Achse auf und die Intensität auf der y-Achse.

		1		1	L
375	.				
-	-				
-					
3	-				
_					
1	-				
8	-				
-	-				
-	-				
_					
-	-				
87	21				
8	-				
_			 		
8					
-	-				
-					
	-				
_					

- 9. Berechne das inverse Quadrat des Abstands und trage es in der Tabelle ein. Man multipliziert den Abstand mit sich selbst und teilt 1 durch das Ergebnis.
- 10. Trage in dem folgenden Graphen auf der x-Achse das inverse Abstandsquadrat und auf der y-Achse wieder die Intensität auf.

-		+	Ì	Ŧ	ţ	ŧ
-1						
-						
+						
-1						
						T
-1						
1						
-1						
-1						
-1-						
-1						
-1						
1						
1						
-1						
-						
-						
I						
-1						
1						
-1						
1						
+						
	T					Ť

5. Fragen zur Analyse

- 1. Betrachte das erste Diagramm. Welche Beziehung besteht zwischen dem Abstand und der Intensität? Zeichne eine glatte Kurve durch deine Messpunkte. Ist die Beziehung linear?
- 2. Betrachte das zweite Diagramm. Ist diese Beziehung linear? Wenn ja zeichne mit einem Lineal eine Linie die am besten passt. Bestimme die Steigung und den y-Achsenabschnitt dieser Geraden.
- Berechne mit der Geradengleichung y=m*x+b die Intensität in 90 cm Entfernung. Vergleiche den berechneten Wert mit einem Messwert. Gibt es Abweichungen? Wenn ja, warum? Begründe.
- 4. Der Planet Neptun ist 30-mal so weit von der Sonne entfernt wie die Erde. Wie stark ist das Sonnenlicht, das auf den Neptun trifft, im Vergleich zu dem, das auf die Erde trifft?

6. Alternativer Versuchsaufbau

- 1. Verbinde den Smart Lichtsensor und das Smart Cart mit SPARKvue.
- 2. Montiere den Lichtsensor mit Hilfe des beiliegenden Stativstab und des Stativadapters auf dem Smart Cart.
- 3. Stelle die Lichtquelle so auf den Tisch, dass sie sich auf der Höhe des Lichtsensors befindet.
- 4. Wähle in SPARKvue eine graphische Darstellung aus und trage auf der x-Achse die Position des Smart Carts und auf der y-Achse die Weißintensität des Lichtsensors auf.
- 5. Starte die Messung und lasse das Smart Cart von der Lichtquelle wegrollen. Beende die Messung.

